

MOS INTEGRATED CIRCUITS

μ PD78F4938A

16-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The μ PD78F4938A is a product in the μ PD784938A Subseries in the 78K/IV Series.

The μ PD78F4938A has flash memory in place of the internal ROM of the μ PD784938A. The flash memory incorporated enables program writing or erasing with the microcontroller mounted on the target board.

Detailed function descriptions are provided in the following user's manuals. Be sure to read them before designing.

 μ PD784938A Subseries User's Manual Hardware: U13570E 78K/IV Series User's Manual Instructions: U10905E

FEATURES

Pin-compatible with mask ROM version (except VPP pin)

Flash memory: 256 KBInternal RAM: 10496 bytes

• Serial interface: 4 channels

• UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator)

• CSI (3-wire serial I/O): 2 channels

• On-chip IEBusTM controller

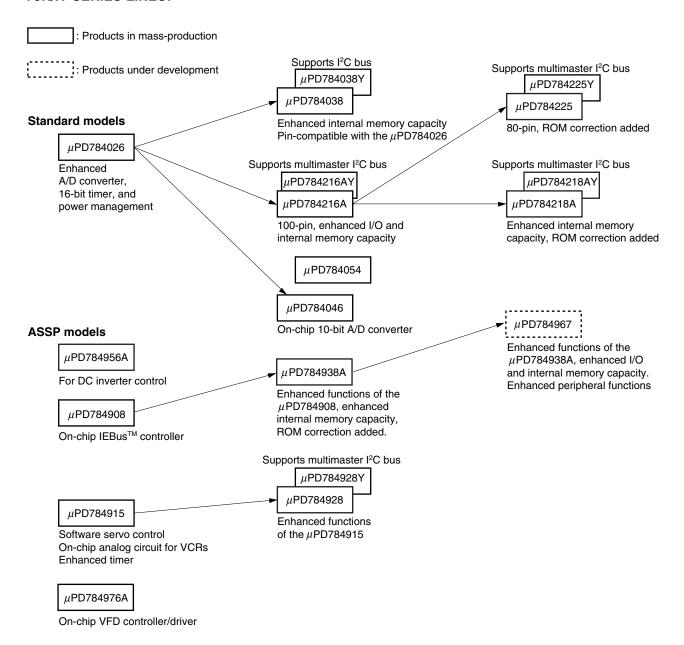
Supply voltage: VDD = 4.0 to 5.5 V (@12.58 MHz operation)

 $V_{DD} = 3.0 \text{ to } 5.5 \text{ V } (@6.29 \text{ MHz operation})$

APPLICATION

Car audio, etc.

ORDERING INFORMATION


Part Number	Package	Internal ROM	Internal RAM
μPD78F4938AGF-3BA	100-pin plastic QFP (14 × 20)	256 KB	10496 bytes

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

78K/IV SERIES LINEUP

Remark Although VFD (Vacuum Florescent Display is generally used, in some documents, the display is described as FIP™ (Florescent Inidicator Panel). VFD and FIP are functionally equivalent.

OVERVIEW OF FUNCTIONS

(1/2)

Item	_	Part Number	μPD78F4938A				
Number of bas	ic ins	tructions (mnemonics)	113				
General-purp	ose	registers	8 bits × 32 registers × 8	B banks, or 16 bits × 8 registers	× 8 banks (memory map)		
Minimum instruction execution time		•	2.54 µs (@6.29 MHz operation) .27 µs (@12.58 MHz operation)				
Internal memory ROM		ROM	256 KB				
		RAM	10496 bytes				
Memory space	е		1 MB with program and	data spaces combined			
I/O port		Total	80 pins				
		Input	8 pins				
		I/O	72 pins				
Pins with	LED	direct drive output	24 pins				
ancillary	Trar	nsistor direct drive	8 pins				
function ^{Note}	N-cl	n open drain drive	4 pins				
Real-time out	tput p	oort	4 bits \times 2, or 8 bits \times 1				
IEBus controller			Internal (simple version)				
Timer/counter		Timer/event counter 0: (16 bits)	Timer counter \times 1 Capture register \times 1 Compare register \times 2	Pulse output possible			
			Timer/event counter 1: (16 bits)	Timer counter \times 1 Capture register \times 1 Capture/compare register \times 1 Compare register \times 1	Real-time output port		
			Timer/event counter 2: (16 bits)	Timer counter \times 1 Capture register \times 1 Capture/compare register \times 1 Compare register \times 1	Pulse output possible		
			Timer 3 (16 bits):	Timer counter × 1 Compare register × 1			
Watch timer			Generates interrupt request at 0.5-second intervals (On-chip watch clock oscillator) Main clock (12.58 MHz) or watch clock (32.7 kHz) selectable as input clock				
Clock output			Selectable from fclk, fclk/2, fclk/4, fclk/8, or fclk/16 (also usable as 1-bit output port)				
PWM output		12-bit resolution × 2 channels					
Serial interface			UART/IOE (3-wire serial I/O): 2 channels (on-chip baud rate generator) CSI (3-wire serial I/O): 2 channels				
A/D converte	r		8-bit resolution \times 8 channels				
Watchdog tim	ner		1 channel				
ROM correcti	ion fu	ınction	Internal (4 points of correction addresses can be set.)				
External expa	ansio	n function	Provided (up to 1 MB)				

Note Pins with ancillary functions are included in the I/O pins.

(2/2)

	Part Number	μPD78F4938A
Item		
Standby		HALT/STOP/IDLE mode
Interrupt	Hardware source	27 (internal: 20, external: 7 (sampling clock variable input: 1))
	Software source	BRK instruction, BRKCS instruction, operand error
	Non-maskable	Internal: 1, external: 1
	Maskable	Internal: 19, external: 6
		Four programmable priority levels Three types of processing formats: Vectored interrupt/macro service/context switching
Supply voltage		 V_{DD} = 4.0 to 5.5 V (@12.58 MHz operation) V_{DD} = 3.0 to 5.5 V (@6.29 MHz operation)
Package		100-pin plastic QFP (14 × 20)

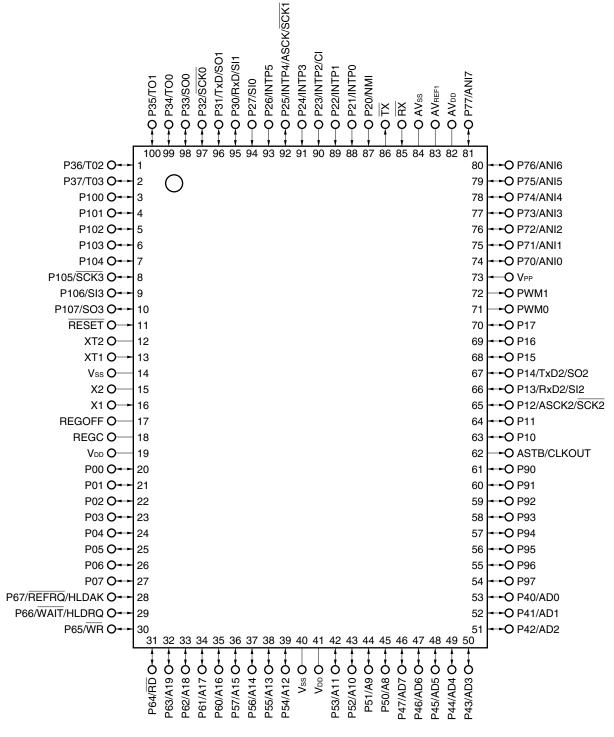
CONTENTS

1.	DIFFERENCES AMONG PRODUCTS IN μ PD784938A SUBSERIES	6
2.	PIN CONFIGURATION (TOP VIEW)	7
3.	BLOCK DIAGRAM	9
4.	PIN FUNCTIONS	10
	4.1 Port Pins	10
	4.2 Non-Port Pins	
	4.3 Pin I/O Circuits and Recommended Connection of Unused Pins	14
5.	INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)	18
6.	PROGRAMMING FLASH MEMORY	
	6.1 Selecting Communication Mode	19
	6.2 Flash Memory Programming Functions	20
	6.3 Connecting Flashpro III	21
7.	ELECTRICAL SPECIFICATIONS	22
8.	PACKAGE DRAWING	42
9.	RECOMMENDED SOLDERING CONDITIONS	43
AP	PPENDIX A. DEVELOPMENT TOOLS	44
ΑP	PPENDIX B. RELATED DOCUMENTS	47

1. DIFFERENCES AMONG PRODUCTS IN μ PD784938A SUBSERIES

The only difference between the μ PD784935A, 784936A, 784937A, and 784938A is the internal memory capacity. The μ PD78F4938A has a 256 KB flash memory in the place of the mask ROM of the above products. Table 1-1 shows the differences between these products.

Table 1-1. Differences Among Products in μ PD784938A Subseries


Part Number	μPD784935A	μPD784936A	μPD784937A	μPD784938A	μPD78F4938A		
Item							
Internal ROM	96 KB	128 KB	192 KB	256 KB			
	Mask ROM				Flash memory		
Internal RAM	5120 bytes	5120 bytes 6656 bytes 8192 bytes 10496 bytes					
Regulator	Provided	Provided					
Electrical specifications	Refer to the data	sheet of each produ	ct.				
Internal memory size switching register ^{Note}	None	None					
IC pin	Provided	None					
V _{PP} pin	None	None					

Note The internal flash memory capacity and internal RAM capacity can be changed by using the internal memory size switching register (IMS).

Caution There are differences in noise immunity and noise radiation between the flash memory and mask ROM versions. When pre-producing an application set with the flash memory version and then mass-producing it with the mask ROM version, be sure to conduct sufficient evaluations for the commercial samples (not engineering samples) of the mask ROM version.

2. PIN CONFIGURATION (TOP VIEW)

• 100-pin plastic QFP (14 \times 20) μ PD78F4938AGF-3BA

Cautions 1. In normal operation mode, connect VPP pin directly to the Vss pin, or pull it down.

In a system where the internal flash memory is rewritten while mounted on board, pull the VPP pin down.

When pulling down, connection via a 470 Ω or higher and 10 k Ω or lower resistor is recommended.

- 2. Connect the AVDD pin directly to VDD.
- 3. Connect the AVss pin directly to Vss.

A8 to A19: Address bus
AD0 to AD7: Address/data bus
ANI0 to ANI7: Analog input

ASCK, ASCK2: Asynchronous serial clock

ASTB: Address strobe AV_{DD}: Analog power supply AVREF1: Reference voltage AVss: Analog ground CI: Clock input CLKOUT: Clock output HLDAK: Hold acknowledge HLDRQ: Hold request

INTP0 to INTP5: Interrupt from peripherals

NMI: Non-maskable interrupt

P00 to P07: Port 0 P10 to P17: Port 1 P20 to P27: Port 2 P30 to P37: Port 3 P40 to P47: Port 4 P50 to P57: Port 5 P60 to P67: Port 6 P70 to P77: Port 7 P90 to P97: Port 9 P100 to P107: Port 10 PWM0, PWM1: Pulse width modulation output

RD: Read strobe
REFRQ: Refresh request
REGC: Regulator capacitance

REGOFF: Regulator off

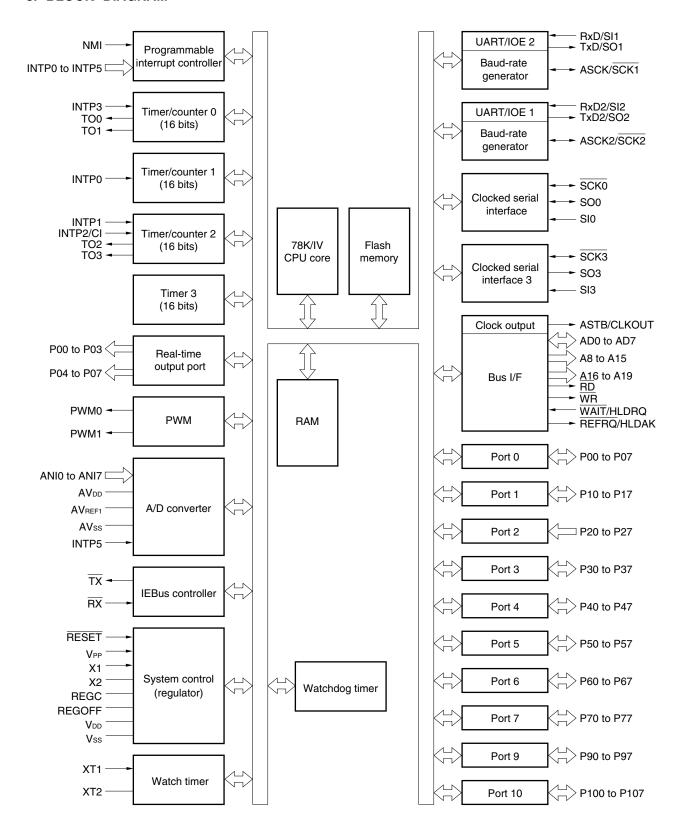
RESET: Reset

RX:IEBus receive dataRxD, RxD2:Receive dataSCK0 to SCK3:Serial clockSI0 to SI3:Serial inputSO0 to SO3:Serial outputTO0 to TO3:Timer output

TX: IEBus transmit data

TxD, TxD2: Transmit data VDD: Power supply

VPP: Programming power supply


Vss: Ground Walt:

WR: Write strobe

X1, X2: Crystal (main system clock)

XT1, XT2: Crystal (watch)

3. BLOCK DIAGRAM

4. PIN FUNCTIONS

4.1 Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function
P00 to P07	I/O	_	 Port 0 (P0): 8-bit I/O port. Can be used as real-time output port (4 bits × 2). Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software for pins in input mode. Can drive transistor.
P10	I/O	_	Port 1 (P1):
P11			8-bit I/O port. Input/output can be specified in 1-bit units.
P12		ASCK2/SCK2	An on-chip pull-up resistor can be specified by means of software for pins
P13		RxD2/SI2	in input mode.
P14		TxD2/SO2	Can drive LED.
P15 to 17		_	
P20	Input	NMI	Port 2 (P2):
P21		INTP0	8-bit input port. Pool
P22		INTP1	P20 cannot be used as general-purpose port pin (non-maskable interrupt). However, input level can be checked by interrupt routine.
P23		INTP2/CI	An on-chip pull-up resistor can be specified for P22 to P27 by means of
P24		INTP3	software in 6-bit units.
P25		INTP4/ASCK/SCK1	P25/INTP4/ASCK/SCK1 pin operates as SCK1 I/O pin if so specified by
P26	1	INTP5	CSIM1.
P27	1	SIO	
P30	I/O	RxD/SI1	Port 3 (P3):
P31	1	TxD/SO1	8-bit I/O port.
P32	1	SCK0	Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software for pins.
P33	1	SO0	in input mode.
P34 to P37	1	TO0 to TO3	P32 and P33 can be specified for N-ch open-drain connection.
P40 to P47	I/O	AD0 to AD7	Port 4 (P4): • 8-bit I/O port. • Input/output can be specified in 1-bit units. • An on-chip pull-up resistor can be specified by means of software for pins in input mode. • Can drive LED.
P50 to P57	I/O	A8 to A15	Port 5 (P5): • 8-bit I/O port. • Input/output can be specified in 1-bit units. • An on-chip pull-up resistor can be specified by means of software for pins in input mode. • Can drive LED.
P60 to P63	I/O	A16 to A19	Port 6 (P6):
P64		RD	8-bit I/O port. Input/output can be specified in 1-bit units.
P65		WR	Input/output can be specified in 1-bit units. An on-chip pull-up resistor can be specified by means of software for pins.
P66		WAIT/HLDRQ	in input mode.
P67		REFRQ/HLDAK	

4.1 Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
P70 to P77	I/O	ANI0 to ANI7	Port 7 (P7): • 8-bit I/O port. • Input/output can be specified in 1-bit units.
P90 to P97	I/O	_	Port 9 (P9): • 8-bit I/O port. • Input/output can be specified in 1-bit units. • An on-chip pull-up resistor can be specified by means of software for pins in input mode.
P100 to P104	I/O	_	Port 10 (P10):
P105		SCK3	8-bit I/O port. Input/output can be specified in 1-bit units.
P106		SI3	An on-chip pull-up resistor can be specified by means of software for pins in input mode.
P107		SO3	P105 and P107 can be specified for N-ch open-drain connection.

4.2 Non-Port Pins (1/2)

Pin Name	I/O	Alternate Function	Function				
TO0 to TO3	Output	P34 to P37	Timer output				
CI	Input	P23/INTP2	Count clock input to timer/c	ounter 2			
RxD	Input	P30/SI1	Serial data input (UART0)				
RxD2		P13/SI2	Serial data input (UART2)				
TxD	Output	P31/SO1	Serial data output (UART0)				
TxD2		P14/SO2	Serial data output (UART2)				
ASCK	Input	P25/INTP4/SCK1	Baud rate clock input (UART0)				
ASCK2		P12/SCK2	Baud rate clock input (UART2)				
SI0	Input	P27	Serial data input (3-wire ser	rial I/O0)			
SI1		P30/RxD	Serial data input (3-wire ser	rial I/O1)			
SI2		P13/RxD2	Serial data input (3-wire ser	rial I/O2)			
SI3		P106	Serial data input (3-wire ser	rial I/O3)			
SO0	Output	P33	Serial data output (3-wire se	erial I/O0)			
SO1		P31/TxD	Serial data output (3-wire se	erial I/O1)			
SO2		P14/TxD2	Serial data output (3-wire se	erial I/O2)			
SO3		P107	Serial data output (3-wire se	erial I/O3)			
SCK0	I/O	P32	Serial clock input/output (3-wire serial I/O0)				
SCK1		P25/INTP4/ASCK	Serial clock input/output (3-wire serial I/O1)				
SCK2		P12/ASCK2	Serial clock input/output (3-wire serial I/O2)				
SCK3		P105	Serial clock input/output (3-wire serial I/O3)				
NMI	Input	P20	External interrupt requests —				
INTP0		P21		Count clock input to timer/counter 1			
				Capture trigger signal of CR11 or CR12			
INTP1		P22		Count clock input to timer/counter 2			
				Capture trigger signal of CR22			
INTP2		P23/CI		Count clock input to timer/counter 2			
				Capture trigger signal of CR21			
INTP3		P24		Count clock input to timer/counter 0			
				Capture trigger signal of CR02			
INTP4		P25/ASCK/SCK1		_			
INTP5		P26		Conversion start trigger input of A/D converter			
AD0 to AD7	I/O	P40 to P47	Time-division address/data	bus (external memory connection)			
A8 to A15	Output	P50 to P57	Higher address bus (extern	al memory connection)			
A16 to A19	Output	P60 to P63	Higher address for address	extension (external memory connection)			
RD	Output	P64	Read strobe to external me	mory			
WR	Output	P65	Write strobe to external me	mory			
WAIT	Input	P66/HLDRQ	Wait insertion				
REFRQ	Output	P67/HLDAK	Refresh pulse output to external pseudo-static memory				
HLDRQ	Input	P66/WAIT	Bus hold request input				
HLDAK	Output	P67/REFRQ	Bus hold acknowledge outp	put			
ASTB	Output	CLKOUT	Latch timing output of time-	Latch timing output of time-division address (A0 to A7) (when external			
			memory is accessed)				

4.2 Non-Port Pins (2/2)

Pin Name	I/O	Alternate Function	Function
CLKOUT	Output	ASTB	Clock output
PWM0	Output	_	PWM output 0
PWM1	Output	_	PWM output 1
RX	Input	_	Data input (IEBus)
TX	Output	_	Data output (IEBus)
REGC	_	_	Connecting capacitor for regulation output stabilization/power supply when
			regulator is stopped
REGOFF	_	_	Regulator operation specification signal
RESET	Input	_	Chip reset
X1	Input	_	Connecting crystal resonator for system clock oscillation (clock can be also
X2	_		input to X1.)
XT1	Input	_	Watch clock connection
XT2	_	_	
ANI0 to ANI7	Input	P70 to P77	Analog voltage input for A/D converter
AV _{REF1}	_	_	Application of reference voltage for A/D converter
AV _{DD}			Positive power supply for A/D converter
AVss			GND for A/D converter
V _{DD}			Positive power supply
Vss			GND
VPP	Input		Sets flash memory programming mode.
			For high voltage application when program is written or verified. In normal
			operation mode, connect VPP pin directly to the Vss pin, or pull it down. In a
			system where the internal flash memory is rewritten while mounted on
			board, pull the V_{PP} pin down. When pulling down, connection via a 470 Ω
			or higher and 10 $k\Omega$ or lower resistor is recommended.

4.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The I/O circuit type of each pin and recommended connection of unused pins are shown in Table 4-1. For the I/O circuit configuration of each type, refer to **Figure 4-1**.

Table 4-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (1/2)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00 to P07	5-A	I/O	Input: Connect to VDD.
P10, P11			Output: Leave open.
P12/ASCK2/SCK2	8-A		
P13/RxD2/SI2	5-A		
P14/TxD2/SO2			
P15 to P17			
P20/NMI	2	Input	Connect to V _{DD} or V _{SS} .
P21/INTP0			
P22/INTP1	2-A		Connect to V _{DD} .
P23/INTP2/CI			
P24/INTP3			
P25/INTP4/ASCK/SCK1	8-A	I/O	Input: Connect to VDD.
			Output: Leave open.
P26/INTP5	2-A	Input	Connect to V _{DD} .
P27/SI0			
P30/RxD/SI1	5-A	I/O	Input: Connect to V _{DD} .
P31/TxD/SO1			Output: Leave open.
P32/SCK0	10-A		
P33/S00			
P34/TO0 to P37/TO3	5-A		
P40/AD0 to P47/AD7			
P50/A8 to P57/A15			
P60/A16 to P63/A19			
P64/RD			
P65/WR			
P66/WAIT/HLDRQ			
P67/REFRQ/HLDAK			
P70/ANI0 to P77/ANI7	20	I/O	Input: Connect to V _{DD} or V _{SS} .
P90 to P97	5-A		Output: Leave open.
P100 to P104			
P105/SCK3	10-A		
P106/SI3	8-A		
P107/SO3	10-A		
ASTB/CLKOUT	4	Output	Leave open.
RESET	2	Input	_
V _{PP}	1	1	Connect directly to Vss.
XT2	_	_	Leave open.
XT1	_	Input	Connect directly to Vss.

Table 4-1. Types of Pin I/O Circuits and Recommended Connection of Unused Pins (2/2)

Pin Name	Pin Name I/O Circuit Type		Recommended Connection of Unused Pins
REGOFF	1	_	Connect directly to VDD.
REGC	_	_	Connect to VDD.
PWM0, PWM1	3	Output	Leave open.
RX	1	Input	Connect to V _{DD} or V _{SS} .
TX	3	Output	Leave open.
AV _{REF1}	_	_	Connect to Vss.
AVss			
AV _{DD}			Connect to VDD.

Caution Connect an I/O pin to V_{DD} via a resistor of several 10 k Ω if the I/O mode of the pin is unstable (especially if the voltage on the reset pin is higher than the low-level input voltage on power application or if the mode is changed between input and output by software).

Remark The circuit type numbers are common for the 78K Series and are not always sequential for one product (some circuits are not provided).

Figure 4-1. Pin I/O Circuits (1/2)

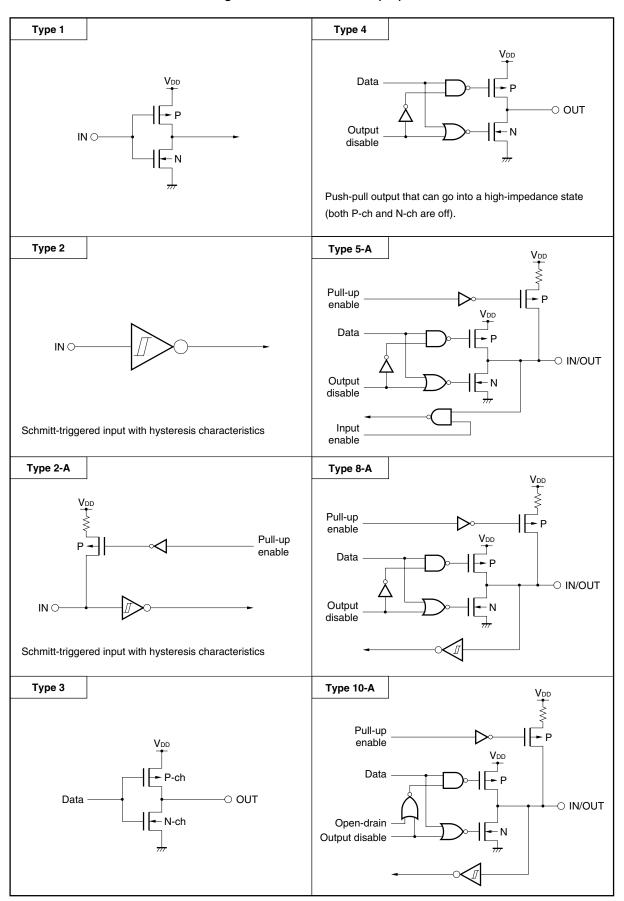
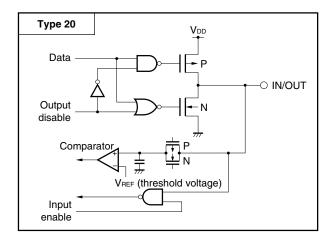



Figure 4-1. Pin I/O Circuits (2/2)

5. INTERNAL MEMORY SIZE SWITCHING REGISTER (IMS)

IMS is a register to prevent a certain part of the internal memory from being used by software. By setting the IMS, it is possible to establish a memory map that is the same as that of mask ROM version with a different internal memory (ROM, RAM) capacity.

IMS is set with an 8-bit memory manipulation instruction.

RESET input sets IMS to FFH.

Figure 5-1. Internal Memory Size Switching Register (IMS) Format

Address	0FFFCH	After rese	et FFH	W				
Symbol	7	6	5	4	3	2	1	0
IMS	1	1	ROM1	ROM0	1	1	RAM1	RAM0

ROM1	ROM0	Internal ROM Capacity Selection
0	0	256 KB
0	1	96 KB
1	0	128 KB
1	1	192 KB

	RAM1	RAM0	Internal RAM Capacity Selection
	0	0	10496 bytes
	0	1	5120 bytes
	1	0	6656 bytes
Ì	1	1	8192 bytes

Caution IMS is not available for mask ROM versions (µPD784935A, 784936A, 784937A, and 784938A).

The IMS settings to create the same memory map as mask ROM versions are shown in Table 5-1.

Table 5-1. Internal Memory Size Switching Register (IMS) Settings

Relevant Mask ROM Version	IMS Setting
μPD784935A	DDH
μPD784936A	EEH
μPD784937A	FFH
μPD784938A	ССН

Note Shifting to the flash memory programming mode sets all pins not used for flash memory programming to the same state as immediately after reset. Therefore, if the external devices do not acknowledge the port state immediately after reset, handling such as connecting to V_{DD} via a resistor or connecting to V_{SS} via a resistor is required.

6. PROGRAMMING FLASH MEMORY

Flash memory can be written while mounted on the target system (on-board writing). Connect the dedicated flash programmer (Flashpro III (part No.: FL-PR3, PG-FP3)) to the host machine and target system for programming. Moreover, writing to flash memory can also be performed using a flash memory writing adapter connected to Flashpro III.

Remark FL-PR3 is a product of Naito Densei Machida Mfg. Co., Ltd.

6.1 Selecting Communication Mode

The Flashpro III is used to write data into a flash memory by serial communications. Select the communication mode for writing from Table 6-1. Figure 6-1 shows the format used to select the communication mode. Each communication mode is selected with the number of VPP pulses shown in Table 6-1.

Communication Mode	Number of Channels	Pins Used	Number of VPP Pulses
3-wire serial I/O	3	SCK3/P105 SI3/P106 SO3/P107	1
		SCK0/P32 SI0/P27 SO0/P33	0
		SCK3/P105 SI3/P106 SO3/P107 P104 (for handshake)	3
UART	1	RxD/P30 TxD/P31	8

Table 6-1. Communication Mode

Caution Always select the communication mode using the number of VPP pulses shown in Table 6-1.

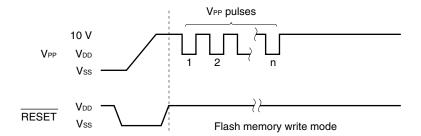
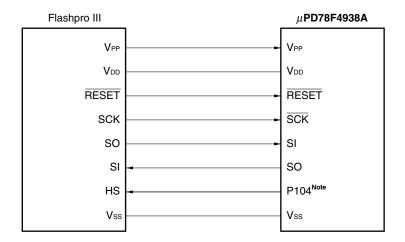


Figure 6-1. Communication Mode Selection Format

6.2 Flash Memory Programming Functions

By transmitting and receiving various commands and data by the selected communication mode, operations such as writing to the flash memory are performed. Table 6-2 shows the major functions.

Table 6-2. Flash Memory Programming Functions


Function	Description
Area erase	Erase the contents of the specified memory area where one memory block is 16 KB.
Area blank check	Checks the erase state of the specified area.
Data write	Writes to the flash memory based on the start write address and the number of data written (number of bytes).
Area verify	Compares the data input with the contents of the specified memory area.

Verification for the flash memory entails supplying the data to be verified from an external source via a serial interface, and then outputting the existence of unmatched data to the external source after referencing the areas or all of the data. Consequently, the flash memory is not equipped with a read function, and it is not possible for third parties to read the contents of the flash memory with the use of the verification function.

6.3 Connecting Flashpro III

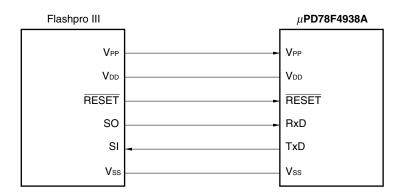

The connection between the Flashpro III and the μ PD78F4938A differs depending on the communication mode (3-wire serial I/O or UART). Figures 6-2 and 6-3 are the connection diagrams in each case.

Figure 6-2. Flashpro III Connection in 3-Wire Serial I/O Mode

Note Only in the handshake communication

Figure 6-3. Flashpro III Connection in UART Mode

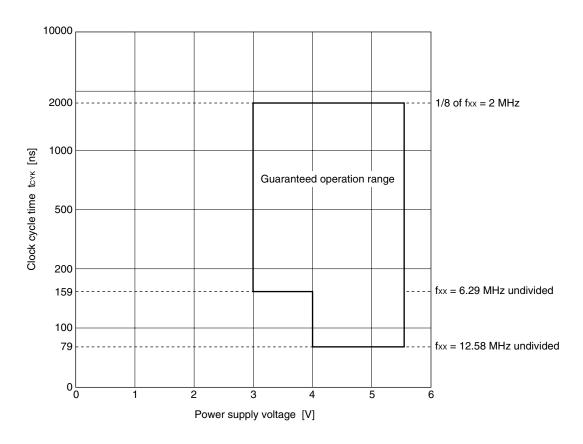
7. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD}		-0.3 to +6.5	٧
	AV _{DD}		-0.3 to V _{DD} + 0.3	٧
	AVss		-0.3 to Vss + 0.3	٧
	AV _{REF1}	A/D converter reference voltage input	-0.3 to V _{DD} + 0.3	٧
Input voltage	Vı2		-0.3 to +10.5	٧
Analog input voltage	VIAN	Analog input voltage	AVss - 0.3 to AVREF1 + 0.3	٧
Output voltage	Vo		-0.3 to V _{DD} + 0.3	٧
Output current, low	lol	Per pin	10	mA
		Total for all pins of ports 0, 3, 6, 10 and P54 to P57	50	mA
		Total for all pins of ports 1, 4, 7, 9, P50 to P53, PWM0, PWM1, and TX pins	50	mA
Output current, high	Іон	Per pin	-6	mA
		Total for all pins of ports 0, 3, 6, 10,and P54 to P57	-30	mA
		Total for all pins of ports 1, 4, 7, 9, P50 to P53, PWM0, PWM1, and TX pins	-30	mA
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	T _{stg}		-40 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.


Operating Conditions

Clock frequency

Clock Frequency	Supply Voltage
4 MHz ≤ fxx ≤ 12.58 MHz	$4.0 \le V_{DD} \le 5.5 V$
4 MHz ≤ fxx ≤ 6.29 MHz	$3.0 \le V_{DD} \le 5.5 V$

- Operating ambient temperature (T_A): −40 to +85°C
- Power supply voltage and clock cycle time: Refer to Figure 7-1
- Selection of internal regulator operation (REGOFF pin: low-level input)

Figure 7-1. Power Supply Voltage and Clock Cycle Time

Capacitance (TA = 25°C, VDD = Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	f = 1 MHz			15	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю				15	pF

Main Oscillator Characteristics (T_A = -40 to +85°C, V_{DD} = 3.0 to 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		MIN.	MAX.	Unit
Oscillator frequency	fxx	Ceramic resonator or	$4.0 \leq V_{DD} \leq 5.5 \ V$	4.0	12.58	MHz
		recommended resonator	$3.0 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	4.0	6.29	MHz

Caution When using the main clock oscillator, wire as follows to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- · Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

Remarks 1. Connect a 12.582912 MHz or 6.291456 MHz oscillator to operate the internal clock timer with the main clock.

2. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Clock Oscillator Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = 3.0 \text{ to } 5.5 \text{ V}$, $V_{SS} = 0 \text{ V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Oscillator frequency	fхт	Ceramic resonator or crystal resonator	32	32.768	35	kHz
Oscillation stabilization time	f _{sxt}	$4.5 \le V_{DD} \le 5.5 V$		1.2	2	s
					10	s
Oscillation hold voltage	VDDXT		3.0		5.5	V
Watch timer operating voltage	V _{DDW}		3.0		5.5	V

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V) (1/2)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Input voltage, low ^{Note}	V _{IL1}	P10, P11, P13 to P17, P34 to P37, P70 to P7 P100 to P104, X1, X2,	7, P90 to P97,	-0.3		0.3V _{DD}	V
	V _{IL2}	P12, P20 to P27, P32, RESET	P33, P105 to P107	-0.3		0.2V _{DD}	V
	VIL3	P00 to P07, P40 to P47,	$4.5 \le V_{DD} \le 5.5 V$	-0.3		0.8	٧
	VIL4	P50 to P57, P60 to P67		-0.3		0.2V _{DD}	V
Input voltage, high	V _{IH1}	P10, P11, P13 to P17, P34 to P37, P70 to P7 P100 to P104, X1, X2,	7, P90 to P97,	0.7V _{DD}		VDD+0.3	V
	V _{IH2}	P12, P20 to P27, P32, RESET	P33, P105 to P107	0.8V _{DD}		V _{DD} +0.3	V
	VIH3	P00 to P07, P40 to P47,	$4.5 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	2.2		V _{DD} +0.3	V
	V _{IH4}	P50 to P57, P60 to P67		0.7V _{DD}		0.3V _{DD}	V
Output voltage, low	V _{OL1}	IoL = 20 μA				0.1	٧
		IoL = 100 μA				0.2	V
		IoL = 2 mA				0.4	٧
	V _{OL2}	loL = 8 mA, P10 to P17, P40 to P47, P50 to P57	$4.5 \le V_{DD} \le 5.5 V$			1.0	V
Output voltage, high	V _{OH1}	Іон = -20 μΑ		V _{DD} -0.1			٧
		IoL = -100 μA		V _{DD} -0.2			V
		IoL = -2 mA		V _{DD} -1.0			V
	V _{OH2}	IoL = -5 mA, P10 to P17, P40 to P47, P50 to P57	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	V _{DD} -2.4			V
Input leakage current, low	ILIL1	V _{IN} = 0 V	For pins other than X1, X2, XT1, and XT2			10	μΑ
	ILIL2		X1, X2, XT1, XT2			-20	μΑ
Input leakage current, high	Іпн1	V _{IN} = V _{DD}	For pins other than X1, X2, XT1, and XT2			10	μΑ
	ILIH2		X1, X2, XT1, XT2			20	μΑ
Output leakage current, low	ILOL1	Vout = 0 V			-10	μΑ	
Output leakage current, high	Ісон	Vout = VDD				10	μΑ

Note These values are valid when the pull-up resistor is off.

DC Characteristics (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V) (2/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Power supply current	I _{DD1}	IDD1 Operating mode	fxx = 12.58 MHz, $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		19	38	mA
			fxx = 6.29 MHz, $3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		10	20	mA
	I _{DD2}	HALT mode	fxx = 12.58 MHz, when peripheral clock stops ^{Note} , $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		3	6	mA
			fxx = 6.29 MHz, when peripheral clock stops ^{Note} , $3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1.8	3.6	mA
	Іррз	IDLE mode	fxx = 12.58 MHz, $4.0 \le V_{DD} \le 5.5 \text{ V}$		2	4	mA
			$f_{XX} = 6.29 \text{ MHz},$ $3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1	2	mA
Data hold voltage	VDDDR	STOP mode		2.5		5.5	٧
Data hold current	IDDDR	STOP mode	V _{DD} = 2.5 V, subsystem clock stops		4	20	μΑ
			V _{DD} = 5.5 V, subsystem clock stops		20	100	μΑ
Pull-up resistor	R∟	VIN = 0 V		15	40	80	kΩ

Note When the main system clock: $f_{CLK} = f_{XX}/8$ is selected (set by the standby control register (STBC)) and the watch timer is operating.

Remark These values are valid when the internal regulator is on (REGOFF pin = low-level input).

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (1/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Cycle time	t cyk	$4.0 \le V_{DD} \le 5.5 \text{ V}$	79			ns
		VDD = 3.0 V	159			ns
Address setup time	tsast	VDD = 5.0 V	(0.5+a) T-11			ns
(to ASTB↓)		V _{DD} = 3.0 V	(0.5+a) T-15			ns
Address hold time	t HSTLA	V _{DD} = 5.0 V	0.5T-19			ns
(from ASTB↓)		V _{DD} = 3.0 V	0.5T-24			ns
ASTB high-level width	twsтн	V _{DD} = 5.0 V	(0.5+a) T-17			ns
		VDD = 3.0 V	(0.5+a) T-40			ns
Address hold time (from $\overline{RD} \uparrow$)	thra	VDD = 5.0 V	0.5T-14			ns
		VDD = 3.0 V	0.5T-14			ns
Delay time from address to	t dar	V _{DD} = 5.0 V	(1+a) T-5			ns
$\overline{RD} \!\!\downarrow$		V _{DD} = 3.0 V	(1+a) T-10			ns
Address float time (from $\overline{RD}\downarrow$)	tfar				0	ns
Data input time from address	t DAID	V _{DD} = 5.0 V			(2.5+a+n) T-37	ns
		V _{DD} = 3.0 V			(2.5+a+n) T-52	ns
Data input time from ASTB \downarrow	tostid	V _{DD} = 5.0 V			(2+n) T-35	ns
		V _{DD} = 3.0 V			(2+n) T-50	ns
Data input time from RD↓	torid	V _{DD} = 5.0 V			(1.5+n) T-40	ns
		V _{DD} = 3.0 V			(1.5+n) T-50	ns
Delay time from ASTB \downarrow to	t DSTR	V _{DD} = 5.0 V	0.5T-9			ns
RD↓		V _{DD} = 3.0 V	0.5T-9			ns
Data hold time (from RD↑)	thrid		0			ns
Address active time from $\overline{\mathrm{RD}} \!\!\uparrow$	t dra	V _{DD} = 5.0 V	0.5T-2			ns
		V _{DD} = 3.0 V	0.5T-12			ns
Delay time from RD↑ to	torst	V _{DD} = 5.0 V	0.5T-9			ns
ASTB↑		V _{DD} = 3.0 V	0.5T-9			ns
RD low-level width	twrl	V _{DD} = 5.0 V	(1.5+n) T-25			ns
		VDD = 3.0 V	(1.5+n) T-30			ns

Remarks 1. T: tcyκ = 1/fclκ (fclκ: internal system clock)

2. a: 1 during address wait; otherwise 0

3. n: Number of wait states $(n \ge 0)$

4. Calculated as T = 79 ns (min.) @ $V_{DD} = 5.0 \text{ V}$

5. Calculated as T = 159 ns (min.) @ VDD = 3.0 V

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

(1) Read/write operation (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from address to	tdaw	V _{DD} = 5.0 V	(1+a) T-5			ns
$\overline{WR} \!\!\downarrow$		VDD = 3.0 V	(1+a) T-10			ns
Address hold time (from $\overline{\mathrm{WR}} \uparrow$)	thwa	V _{DD} = 5.0 V	0.5T-14			ns
		VDD = 3.0 V	0.5T-14			ns
Delay time from ASTB ↓ to	tostod	VDD = 5.0 V			0.5T+15	ns
data output		V _{DD} = 3.0 V			0.5T+20	ns
Data output time from WR↓	towod				15	ns
Delay time from ASTB \downarrow to	tostw	VDD = 5.0 V	0.5T-9			ns
$\overline{WR} \!\!\downarrow$		V _{DD} = 3.0 V	0.5T-9			ns
Data setup time (to WR↑)	tsodwr	VDD = 5.0 V	(1.5+n) T-20			ns
		V _{DD} = 3.0 V	(1.5+n) T-25			ns
Data hold time (from WR↑)	thwod	VDD = 5.0 V	0.5T-14			ns
		V _{DD} = 3.0 V	0.5T-14			ns
Delay time from WR ↑ to	towst	V _{DD} = 5.0 V	0.5T-9			ns
ASTB↑		V _{DD} = 3.0 V	0.5T-9			ns
WR low-level width	twwL	V _{DD} = 5.0 V	(1.5+n) T-25			ns
		V _{DD} = 3.0 V	(1.5+n) T-30			ns

Remarks 1. T: tcγκ = 1/fclκ (fclκ: internal system clock)

2. a: 1 during address wait; otherwise 0

3. n: Number of wait states $(n \ge 0)$

4. Calculated as T = 79 ns (min.) @ $V_{DD} = 5.0 \text{ V}$

5. Calculated as T = 159 ns (min.) @ $V_{DD} = 3.0 \text{ V}$

AC Characteristics (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

(2) External wait timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
WAIT↓ input time from	t DAWT	V _{DD} = 5.0 V			(2+a) T-40	ns
address		V _{DD} = 3.0 V			(2+a) T-60	ns
WAIT↓ input time from ASTB↓	t DSTWT	V _{DD} = 5.0 V			1.5T-40	ns
		V _{DD} = 3.0 V			1.5T-60	ns
WAIT hold time from ASTB ↓	tнsтwтн	V _{DD} = 5.0 V	(0.5+n) T+5			ns
		V _{DD} = 3.0 V	(0.5+n) T+10			ns
Delay time from ASTB↓ to	t DSTWTH	V _{DD} = 5.0 V			(1.5+a) T-40	ns
WAIT↑		V _{DD} = 3.0 V			(1.5+a) T-60	ns
WAIT↓ input time from RD↓	t drwtl	V _{DD} = 5.0 V			T-40	ns
		V _{DD} = 3.0 V			T-60	ns
WAIT hold time from RD↓	thrwt	V _{DD} = 5.0 V	nT+5			ns
		V _{DD} = 3.0 V	nT+10			ns
Delay time from RD↓ to	torwth	V _{DD} = 5.0 V			(1+n) T-40	ns
WAIT↑		V _{DD} = 3.0 V			(1+n) T-60	ns
Data input time from WAIT↑	towtid	V _{DD} = 5.0 V			0.5T-5	ns
		V _{DD} = 3.0 V			0.5T-10	ns
Delay time from WAIT↑ to	towtr	V _{DD} = 5.0 V	0.5T			ns
RD↑		V _{DD} = 3.0 V	0.5T			ns
Delay time from WAIT↑ to	towtw	V _{DD} = 5.0 V	0.5T			ns
WR↑		V _{DD} = 3.0 V	0.5T			ns
WAIT↓ input time from WR↓	towwtl	V _{DD} = 5.0 V			T-40	ns
		V _{DD} = 3.0 V			T-60	ns
WAIT hold time from WR↓	tнwwт	VDD = 5.0 V	nT+5			ns
		V _{DD} = 3.0 V	nT+10			ns
Delay time from WR↓ to	towwth	V _{DD} = 5.0 V			(1+n) T-40	ns
WAIT↑		V _{DD} = 3.0 V			(1+n) T-60	ns

Remarks 1. T: tcyk = 1/fclk (fclk: internal system clock)

2. a: 1 during address wait; otherwise 0

3. n: Number of wait states $(n \ge 0)$

4. Calculated as T = 79 ns (min.) @ $V_{DD} = 5.0 \text{ V}$

5. Calculated as T = 159 ns (min.) @ VDD = 3.0 V

AC Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 3.0 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

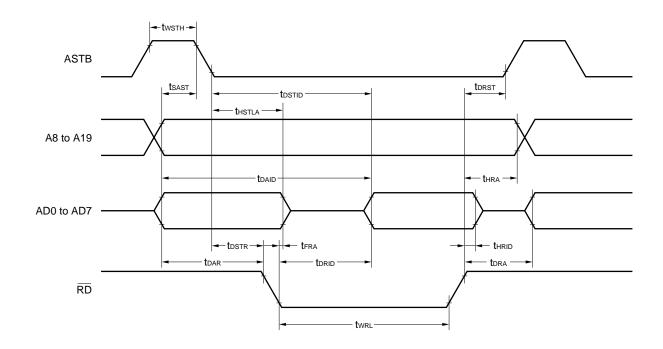
(3) Bus hold/refresh timing

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Delay time from HLDRQ↑	trhac	V _{DD} = 5.0 V			(2+4+a+n) T+50	ns
to float		V _{DD} = 3.0 V			(2+4+a+n) T+50	ns
Delay time from HLDRQ↑ to	tононнан	V _{DD} = 5.0 V			(3+4+a+n) T+30	ns
HLDAK↑		V _{DD} = 3.0 V			(3+4+a+n) T+40	ns
Delay time from float to	t DCFHA	V _{DD} = 5.0 V			T+30	ns
HLDAK [↑]		V _{DD} = 3.0 V			T+30	ns
Delay time from HLDRQ↓ to	t DHQLHAL	V _{DD} = 5.0 V			2T+40	ns
HLDAK↓		V _{DD} = 3.0 V			2T+60	ns
Delay time from HLDAK↓ to	t DHAC	V _{DD} = 5.0 V	T-20			ns
active		V _{DD} = 3.0 V	T-30			ns
Random read/write cycle time	trc	V _{DD} = 5.0 V	3T			ns
		V _{DD} = 3.0 V	3T			ns
REFRQ low-level pulse width	twrfql	V _{DD} = 5.0 V	1.5T-25			ns
		V _{DD} = 3.0 V	1.5T-30			ns
Delay time from ASTB↓ to	t DSTRFQ	V _{DD} = 5.0 V	0.5T-9			ns
REFRQ		V _{DD} = 3.0 V	0.5T-9			ns
Delay time from RD↑ to	tdrrfq	V _{DD} = 5.0 V	1.5T–9			ns
REFRQ		V _{DD} = 3.0 V	1.5T-9			ns
Delay time from WR↑ to	towrfq	V _{DD} = 5.0 V	1.5T–9			ns
REFRQ		V _{DD} = 3.0 V	1.5T–9			ns
Delay time from REFRQ↑ to	t DRFQST	V _{DD} = 5.0 V	0.5T-9			ns
ASTB		V _{DD} = 3.0 V	0.5T-9			ns
REFRQ high-level pulse width	twrfqh	V _{DD} = 5.0 V	1.5T-25			ns
		V _{DD} = 3.0 V	1.5T-30			ns

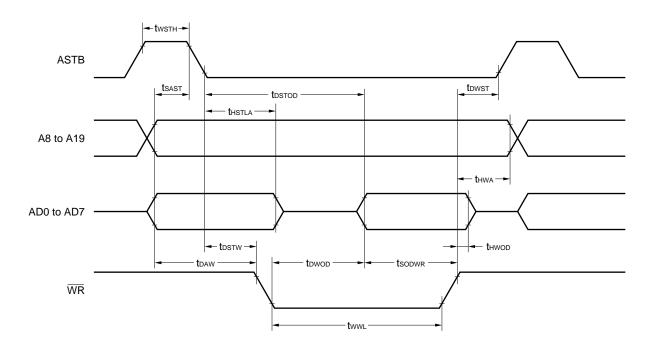
Remarks 1. T: tcyk = 1/fclk (fclk: internal system clock)

2. a: 1 during address wait; otherwise 0

3. n: Number of wait states $(n \ge 0)$

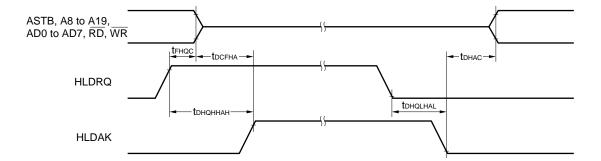

4. Calculated as T = 79 ns (min.) @ $V_{DD} = 5.0 \text{ V}$

5. Calculated as T = 159 ns (min.) @ $V_{DD} = 3.0 \text{ V}$

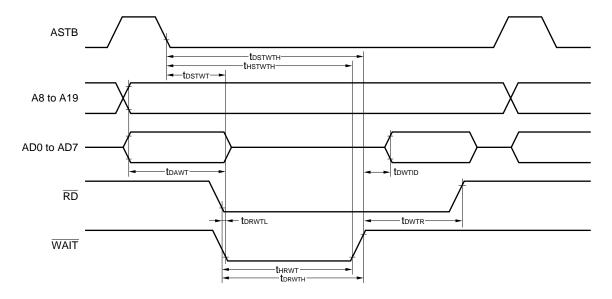


Timing Waveform

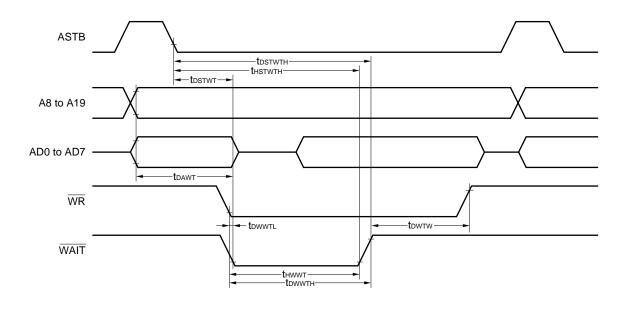
(1) Read operation



(2) Write operation

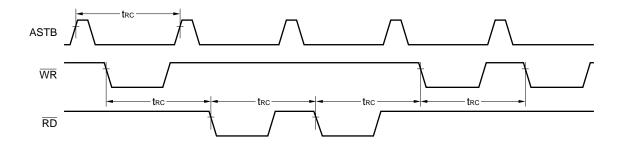


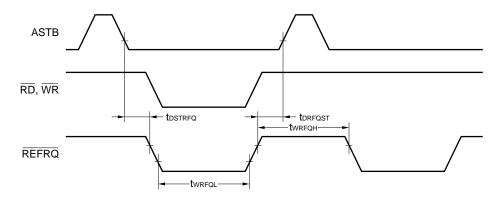
Hold Timing



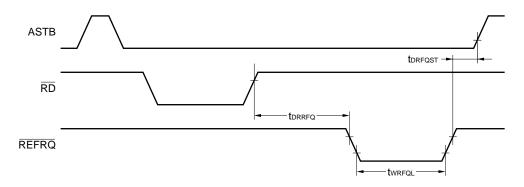
External Wait Signal Input Timing

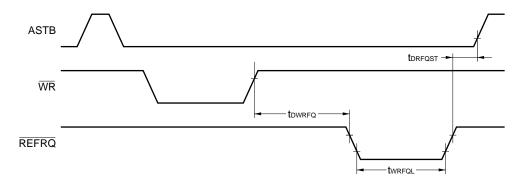
(1) Read operation


(2) Write operation



Refresh Timing Waveform


(1) Random read/write cycle


(2) When refresh memory is accessed for a read and write at the same time

(3) Refresh after a read

(4) Refresh after a write

Serial Operation ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 3.0 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

(a) CSI0, CSI3 3-wire serial I/O mode (SCK0, SCK3 ... External clock input)

Parameter	Symbol	Cond	itions	MIN.	MAX.	Unit
SCK cycle time	tcysko,	SO0 and SO3 are	fclk = fxx	8/fxx		ns
(SCK0, SCK3)	tcysk3	CMOS outputs	Except fclk = fxx	4/fclk		ns
SCK low-level width	twskLo,	SO0 and SO3 are	fclk = fxx	4/fxx - 40		ns
(SCKO, SCK3)	twsĸĿз	CMOS outputs	Except fclk = fxx	2/fcLK - 40		ns
SCK high-level width	twsкно,	SO0 and SO3 are	fclk = fxx	4/fxx - 40		ns
(SCK0, SCK3)	twsкнз	CMOS outputs	Except fclk = fxx	2/fcLK - 40		ns
SI0, SI3 setup time	tsssкo,			80		ns
(to SCK0, SCK3↑)	tsssk3					
SI0, SI3 hold time	tнssкo,			1/fclk + 80		ns
(from SCK0, SCK3↑)	tнssкз					
Delay time from SCKO,	tobsko,	CMOS output		0	1/fclk + 150	ns
SCK3↓ to output	t _{DBSK3}	N-ch open-drain outp	out (RL = 1 kΩ)	0	1/fclk + 400	ns
SO0, SO3 output hold time	t нѕвѕко,	When data is transfe	rred	0.5tcysко – 40,		ns
(from SCK0, SCK3↑)	tнsвsкз			0.5tсүзкз – 40		

Remarks 1. The values in this table are those when CL = 100 pF.

- **2.** fxx: External oscillator frequency (fxx = 12.58 MHz or fxx = 6.29 MHz)
- 3. fclk: System clock oscillation frequency (selectable from fxx, fxx/2, fxx/4, and fxx/8 by the standby control register (STBC))

(b) CSI0, CSI3 3-wire serial I/O mode (SCK0, SCK3 ... Internal clock output)

Parameter	Symbol	Cond	itions	MIN.	MAX.	Unit
SCK cycle time	tcysko,	SO0 and SO3 are	Except fclk = fxx/8	8/fxx		ns
(SCKO, SCK3)	tcysкз	CMOS outputs	fclk = fxx/8	16/fxx		ns
SCK low-level width	twskLo,	SO0 and SO3 are	Except fclk = fxx/8	4/fxx - 40		ns
(SCK0, SCK3)	twsĸĿз	CMOS outputs	fclk = fxx/8	8/fxx - 40		ns
SCK high-level width	twsкно,	SO0 and SO3 are	Except fclk = fxx/8	4/fxx - 40		ns
(SCK0, SCK3)	twsкнз	3 CMOS outputs	fclk = fxx/8	8/fxx - 40		ns
SI0, SI3 setup time	tsssko,			80		ns
(to SCK0, SCK3↑)	tsssk3					
SI0, SI3 hold time	tнssкo,			80		ns
(from SCK0, SCK3↑)	tнssкз					
Delay time from SCK0,	tobsko,	CMOS output		0	150	ns
SCK3↓ to output	tовsкз	N-ch open-drain outp	out $(R_L = 1 \text{ k}\Omega)$	0	400	ns
SO0, SO3 output hold time	t нѕвѕко,	When data is transfe	rred	0.5tсүsко – 40,		ns
(from SCK0, SCK3↑)	tнsвsкз			0.5tсүзкз – 40		

Remarks 1. The values in this table are those when CL = 100 pF.

- **2.** fxx: External oscillator frequency (fxx = 12.58 MHz or fxx = 6.29 MHz)
- **3.** fclk: System clock oscillation frequency (selectable from fxx, fxx/2, fxx/4, and fxx/8 by the standby control register (STBC))

Serial Operation (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

(c) UART0, UART3 (Asynchronous serial interface mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK0, ASCK2 cycle time	tcyask	$4.0 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	160			ns
			320			ns
ASCK0, ASCK2 low-level width	twaskl	4.0 ≤ V _{DD} ≤ 5.5 V	65			ns
			120			ns
ASCK0, ASCK2 high-level width	twaskh	$4.0 \leq V_{\text{DD}} \leq 5.5 \text{ V}$	65			ns
			120			ns

Serial Operation (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

(d) IOE1, IOE2 3-wire serial I/O mode (SCK1, SCK2 ... External clock input)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCK cycle time (SCK1, SCK2)	tcysk1	$4.0 \le V_{DD} \le 5.5 \text{ V}$	640		ns
	tcysk2		1280		ns
SCK low-level width	twskL1,	$4.0 \le V_{DD} \le 5.5 V$	280		ns
(SCK1, SCK2)	twskL2		600		ns
SCK high-level width	twskH1,	4.0 ≤ V _{DD} ≤ 5.5 V	280		ns
(SCK1, SCK2)	twskH2		600		ns
SI1, SI2 setup time	tsssĸı,		40		ns
(to SCK1 , SCK2 ↑)	tsssk2				
SI1, SI2 hold time	thssk1,		40		ns
(from SCK1, SCK2↑)	thssk2				
Delay time from SCK1, SCK2↓	tososki,		0	50	ns
to output	tDSOSK2				
SO1, SO2 output hold time	thsosk1,	When data is transferred	0.5tcysk1 - 40,		ns
(from SCK1, SCK2↑)	thsosk2		0.5tcүsк2 – 40		

Remarks 1. The values in this table are those when CL = 100 pF.

2. T: Selected serial clock cycle. The minimum value is 8/fxx.

(e) IOE1, IOE2 3-wire serial I/O mode (SCK1, SCK2 ... Internal clock output)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCK cycle time (SCK1, SCK2)	tcysk1		Т		ns
	tcysk2				
SCK low-level width	twsĸL1,		0.5T - 40		ns
(SCK1, SCK2)	twskL2				
SCK high-level width	twskH1,		0.5T - 40		ns
(SCK1, SCK2)	twskH2				
SI1, SI2 setup time	tsssĸı,		40		ns
(to SCK1 , SCK2 ↑)	tsssk2				
SI1, SI2 hold time	thssk1,		40		ns
(from SCK1, SCK2↑)	t _{HSSK2}				
Delay time from SCK1, SCK2↓	tososki,		0	50	ns
to output	tDSOSK2				
SO1, SO2 output hold time	thsosk1,	When data is transferred	0.5tcysкı – 40,		ns
(from SCK1, SCK2↑)	thsosk2		0.5tcүsк2 – 40		

Remarks 1. The values in this table are those when CL = 100 pF.

2. T: Selected serial clock cycle. The minimum value is 8/fxx.

Other Operations (TA = -40 to $+85^{\circ}$ C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
NMI high-/low-level width	twnil twnih		10			μs
INTP0 high-/low-level width	twiтоL twiтон		4tcysmp			s
INTP1 to INTP3, CI high-/ low-level width	twiT1L twiT1H		4tсүсри			s
INTP4, INTP5 high-/ low-level width	twiт2L twiт2H		10			μs
RESET high-/low-level width ^{Note}	twrsl twrsh		10			μs

Note When the power is turned on or when STOP mode is released by reset, secure the oscillation stabilization wait time while the $\overline{\mathsf{RESET}}$ is at a low-level width.

When the power is applied, be sure to activate V_{DD} in the \overline{RESET} = low-level state.

Remark tcysmp: Sampling clock set by software

tcycpu: CPU clock set by software in the CPU

Clock Output Operation (TA = -40 to +85°C, VDD = AVDD = 3.0 to 5.5 V, Vss = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CLKOUT cycle time	tcycl	nT	79		32000	ns
CLKOUT low-level width	tcll	4.5 ≤ V _{DD} ≤ 5.5 V	0.5T - 10			ns
			0.5T - 20			ns
CLKOUT high-level width	tclh	4.5 ≤ V _{DD} ≤ 5.5 V	0.5T - 10			ns
			0.5T - 20			ns
CLKOUT rise time	tclr	4.5 ≤ V _{DD} ≤ 5.5 V			10	ns
		3.0 ≤ V _{DD} ≤ 4.5 V			20	ns
CLKOUT fall time	tclf	4.5 ≤ V _{DD} ≤ 5.5 V			10	ns
		3.0 ≤ V _{DD} ≤ 4.5 V			20	ns

Remark n: Division ratio of clock output frequency, T: tcγκ = 1/fclκ (system clock cycle time)

IEBus Controller Characteristics ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{DD} = AV_{DD} = 4.5 \text{ to } 5.5 \text{ V}$, $V_{SS} = AV_{SS} = 0 \text{ V}$)

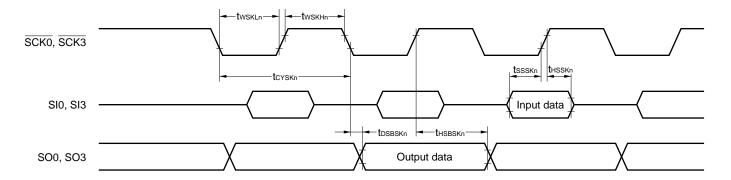
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IEBus system clock frequency	fs	Mode 1		6.29		MHz

Remark Although the system clock frequency in the IEBus specifications is 6.0 MHz, in the μ PD784938A, operation at 6.29 MHz is also guaranteed. Note, however, that operation at 6.0 MHz and 6.29 MHz cannot be used together.

A/D Converter Characteristics (TA = -40 to +85°C, VDD = AVDD = AVREF1 = 3.0 to 5.5 V, Vss = AVss = 0 V)

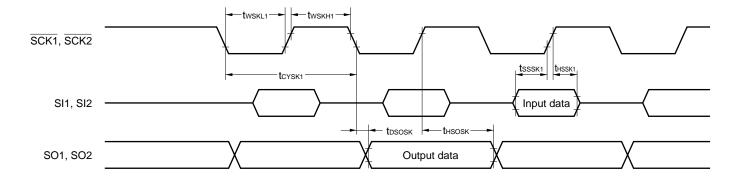
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution				8			bit
Overall errorNote 1		IEAD = 00H 6.29 MHz \leq fxx \leq 12.58 and other than FR = 1				±0.6	%FSRNote 2
			$6.29 \text{ MHz} \le fxx \le 12.58 \text{ MHz}$ and FR = 1			±1.5	%FSRNote 2
		IEAD = 01H	4.5 ≤ V _{DD} ≤ 5.5 V		±1	±2.2	%FSRNote 2
			3.0 ≤ V _{DD} < 5.5 V		±1.4	±2.6	%FSRNote 2
Quantization error						±1/2	LSB
Conversion time	tconv	FR = 1: 120t	СҮК	9.5		480	μs
		FR = 0: 240t	СҮК	19.1		960	μs
Sampling time	t SAMP	FR = 1: 18tc	γК	1.4		72	μs
		FR = 0: 36tc	γк	2.9		144	μs
Analog input voltage	VIAN			AVss		AV _{REF1}	V
Analog input impedance	Ran				1000		ΜΩ
Reference voltage	AV _{REF1}			3.0		AV _{DD}	V
AV _{REF1} resistor	Ravref1			3.0	10		kΩ
AV _{REF1} current	Alref1				0.5	1.5	mA
AV _{DD} current	Al _{DD1}				2.0	5.0	mA
	Aldd2					20	mA

Notes 1. Excludes quantization error (±1/2 LSB).

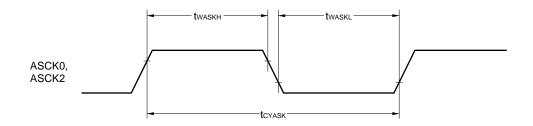

2. It is indicated as a ratio (%FSR) to the full-scale value.

Caution The analog input pins of the μ PD78F4938A function alternately as the port 7 pins (I/O port pins). However when using the A/D converter, it is necessary to set all the pins of port 7 to input mode in order to prevent data from being inverted by the output port operation, thus degrading the A/D conversion accuracy. At this time, pins cannot be used as output ports even though they are not used as A/D analog input port.

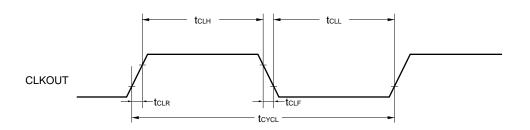
38



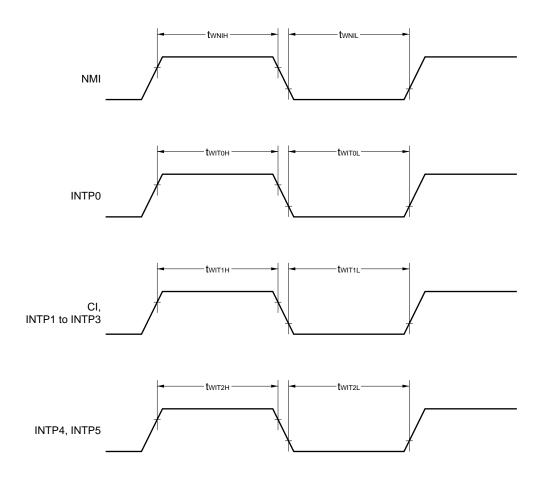
Serial Operation (CSI, CSI3)



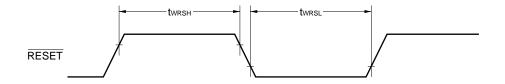
n = 0, 3


Serial Operation (IOE1, IOE2)

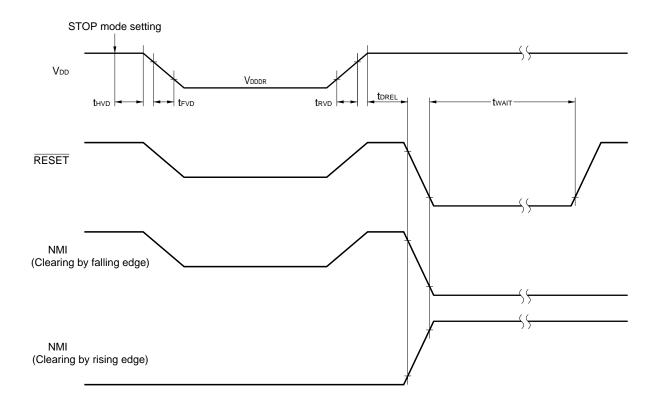
Serial Operation (UART0, UART2)



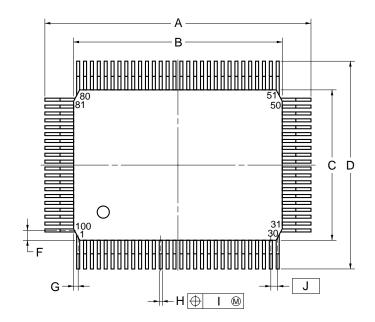
Clock Output Timing



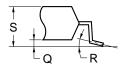
Interrupt Request Input Timing

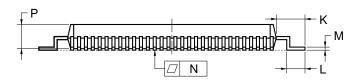


Reset Input Timing



Data Retention Characteristics




8. PACKAGE DRAWING

100PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	0.8	0.031
G	0.6	0.024
Н	0.30±0.10	$0.012^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.65 (T.P.)	0.026 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} -0.05	$0.006^{+0.004}_{-0.003}$
N	0.10	0.004
Р	2.7±0.1	0.106 ^{+0.005} _{-0.004}
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

P100GF-65-3BA1-3

Remark The external dimensions and material of the ES version are the same as those of the mass-produced version.

9. RECOMMENDED SOLDERING CONDITIONS

The μ PD78F4938A should be soldered and mounted under the following recommended conditions.

For details of the recommended soldering conditions, refer to the document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 9-1. Surface Mounting Type Soldering Conditions

μ PD78F4938AGF-3BA: 100-pin plastic QFP (14 imes 20)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	IR35-207-2
VPS	Package peak temperature: 215°C, Time: 40 seconds max. (at 200°C or higher), Count: two times or less, Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	VP15-207-2
Wave soldering	Solder bath temperature: 260°C max., Time: 10 seconds max., Count: once, Preheating temperature: 120°C max. (package surface temperature), Exposure limit: 7 days ^{Note} (after that, prebake at 125°C for 20 hours)	WS60-207-1
Partial heating	Pin temperature: 300°C max., Time: 3 seconds max. (per pin row)	_

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available for system development using the μ PD78F4938A. Also refer to **(5) Cautions on using development tools**.

(1) Language processing software

RA78K4	Assembler package common to 78K/IV Series
CC78K4	C compiler package common to 78K/IV Series
DF784937	Device file for μPD784938A Subseries
CC78K4-L	C compiler library source file common to 78K/IV Series

(2) Flash memory writing tools

Flashpro III (PG-FP3)	Flash programmer for microcontroller with on-chip flash memory
FA-100GF	Flash memory writing adapter for 100-pin plastic QFP (GF-3BA type). Wiring must be performed according to the product used.

(3) Debugging tools

• When IE-78K4-NS in-circuit emulator is used

IE-78K4-NS	In-circuit emulator common to 78K/IV Series
IE-70000-MC-PS-B	Power supply unit for IE-78K4-NS
IE-70000-98-IF-C	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-CD-IF-C	PC card and cable used when PC-9800 series notebook type PC is used as host machine
IE-70000-PC-IF-C	Interface adapter used when IBM PC/AT TM or compatible is used as host machine
IE-784937-NS-EM1	Emulation board to emulate μPD784938A Subseries
NP-100GF	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
ID78K4-NS	Integrated debugger for IE-78K4-NS
SM78K4	System simulator common to 78K/IV Series
DF784937	Device file for μPD784938A Subseries

• When IE-784000-R in-circuit emulator is used

IE-784000-R	In-circuit emulator common to 78K/IV Series
IE-70000-98-IF-B IE-70000-98-IF-C	Interface adapter used when PC-9800 series (except notebook type) is used as host machine
IE-70000-98N-IF	Interface adapter and cable used when PC-9800 series notebook type PC is used as host machine
IE-70000-PC-IF-B IE-70000-PC-IF-C	Interface adapter used when IBM PC/AT or compatible is used as host machine
IE-78000-R-SV3	Interface adapter and cable used when EWS is used as host machine
IE-784937-NS-EM1	Emulation board to emulate μPD784938A Subseries
IE-784000-R-EM	Emulation board common to 78K/IV Series
IE-78K4-R-EX2	Emulation probe conversion board necessary when using IE-784937-NS-EM1 on IE-784000-R. Not necessary when using IE-784937-R-EM1
EP-78064GF-R	Emulation probe for 100-pin plastic QFP (GF-3BA type)
EV-9200GF-100	Socket to be mounted on a target system board made for 100-pin plastic QFP (GF-3BA type)
ID78K4	Integrated debugger for IE-784000-R
SM78K4	System simulator common to 78K/IV Series
DF784937	Device file for μPD784938A Subseries

(4) Real-time OS

RX78K/IV	Real-time OS for 78K/IV Series
MX78K4	OS for 78K/IV Series

(5) Cautions on using development tools

- The ID78K4-NS, ID78K4, and SM78K4 are used in combination with the DF784937.
- The CC78K4 and RX78K/IV are used in combination with the RA78K4 or DF784937.
- The Flashpro III, FA-100GF, and NP-100GF are products made by Naito Densei Machida Mfg. Co, Ltd (TEL +81-44-822-3813).
- The host machine and OS suitable for each software are as follows:

Host Machine [OS]	PC	EWS
	PC-9800 series [Windows] IBM PC/AT and compatibles	HP9000 series 700 TM [HP-UX TM] SPARCstation TM [SunOS TM , Solaris TM]
Software	[Japanese/English Windows]	NEWS™ (RISC) [NEWS-OS™]
RA78K4	Note	V
CC78K4	Note	V
ID78K4-NS	V	_
ID78K4	V	√
SM78K4	V	_
RX78K/IV	√ Note	V
MX78K4	Note	V

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

· Documents related to devices

Document Name	Document No.
μPD784935A, 784936A, 784937A, 784938A Data Sheet	Under preparation
μPD78F4938A Data Sheet	This document
μPD784938 Subseries User's Manual Hardware	U13987E
78K/IV Series User's Manual Instructions	U10905E
78K/IV Series Application Note Software Basics	U10095E

• Documents related to development tools (user's manuals)

Document Name		Document No.
RA78K4 Assembler Package	Language	U11162E
	Operation	U11334E
	Structured Assembler Preprocessor	U11743E
CC78K4 C Compiler	Language	U11571E
	Operation	U11572E
PG-FP3 Flash Memory Programmer		U13502E
IE-78K4-NS		U13556E
IE-784000-R		U12903E
IE-784937-R-EM1		To be prepared
IE-784937-NS-EM1		To be prepared
EP-78064		EEU-1469
SM78K4 System Simulator Windows Based	Reference	U10093E
SM78K Series System Simulator	External Part User Open Interface Specifications	U10092E
ID78K4 Integrated Debugger Windows Based	Reference	U10440E
ID78K4-NS Integrated Debugger Windows Based	Reference	U12796E
Project Manager Ver. 3.12 or Later Windows Based		U14610E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

• Documents related to embedded software (user's manuals)

Document Name		Document No.
78K/IV Series Real-Time OS	Fundamental	U10603E
	Installation	U10604E

Other documents

Document Name	Document No.
SEMICONDUCTOR SELECTION GUIDE Products & Packages (CD-ROM)	X13769X
Semiconductor Device Mounting Technology Manual	C10535E
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	U10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

48

[MEMO]

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

EEPROM, FIP, and IEBus are trademarks of NEC Corporation.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.

PC/AT is a trademark of International Business Machines Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

Solaris and SunOS are trademarks of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.l.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-3067-5800 Fax: 01-3067-5899

NEC Electronics (France) S.A.

Madrid Office Madrid, Spain Tel: 091-504-2787 Fax: 091-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.2

- The information in this document is current as of December, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).